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The heat absorbed by the fluid rising in the tube can be 
written as 

It must be noted, however, that the use of boundary layer 
type of equations in the analysis is limited to cases where Gr is 

Q=2 s I not too large. Otherwise, the velocity profiles will indicate a 
uTr dr. (16) downward flow at the center of the tube exit, and boundary- 

0 layer-type equations used would not be valid for this flow 
behavior. Finally, the Oseen type of linearization of the 
governing equations should only relate to physical cases 
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NOMENCLATURE 

plate thickness; 
local Brun number defined by equation (1); 
thermal conductivity; 
Prandtl number; 
local heat flux; 
transformed heat flux defined by equation (14); 
local Reynolds number ; 
temperature; 
longitudinal and transverse components of 
velocity in boundary layer; 
Cartesian coordinates; 
transformed coordinate defined by 
equation (18); 
transformed coordinate defined by 
equation (10); 

Greek symbols 

x, thermal diffusivity; 
parameter defined by equation (17); 
boundary-layer thickness; 
transformed distance defined by equation (9); 
shear stress; 
absolute viscosity; 
kinematic viscosity; 
dimensionless temperature defined by 
equation (6); 
dimensionless temperature, Q, = 1 - 0. 

Subscripts 

refers to wall surface in contact with fluid; 
refers to wall surface at constant temperature; 
refers to fluid; 
refers to solid; 
refers to thermal boundary layer; 
refers to local values; 
refers to mainstream flow; 
refers to values of Nu, at Br, = 0. 

tNTEODUCTION 
IN THE usual formulation of the problem of heat transfer to 
flow over a flat plate, boundary conditions are specified at the 
upper surface of the plate which is in contact with the fluid. If, 
however, the boundary conditions are specified over the 
lower surface of the plate, the effect of plate resistance, if 
signigicant, must be included in the analysis resulting in a 
conjugate heat-transfer problem. This represents a more 
realistic approach and analyses of this type have recently 
received increased attention resulting in publication of a 
number of papers [ 11. A formulation of such problems was 
originally presented by Luikov [Z] and analytical methods of 
solution of certain conjugate problems were given by Luikov, 
Aleksashenko and Aleksashenko [3]. More recently Luikov 
[4] presented a solution of the problem of heat transfer to 
laminar flow over a plate of finite thickness with the lower 
surface of the plate maintained at a uniform constant 
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temperature. His results indicate that for values of the Brun 
number, ETA, greater than 0.1, neglecting the plate resistance 
will result m errors of more than 5%. The Brun number is 
defined as, 

and is a measure of the ratio of the thermal resistance of the 
plate to that of the boundary layer. Lighthill [s] has 
presented a method of analysis of lammar boundary-layer 
heat-transfer problems which yields reasonably accurate 
results at Prandtl numbers near unity and becomes more and 
more accurate as Pr increases. In the present study Lighthill’s 
method is used to solve the problem of heat transfer to 
larninar incompressible flow over a flat plate of finite 
thickness with the lower surface held at a constant tempera- 
ture. An interesting aspect of the solution is that the 
temperature of the upper surface is found to depend only on 
Br, and is independent of Pr. 

In the analysis of Luikov [4] two approximate solutions 
are given. One is based on a differential analysis assuming a 
uniform velocity profile in the thermal boundary layer and 
the other is an integral analysis based on polynomial 
representations of velocity and temperature profiles. As such 
his results are applicable to Prandtl numbers near or lower 
than unity. The results of the present study could therefore be 
considered to complement and extend those of Luikov. 

FORMULATION OF THE PROBLEM 

Figure 1 shows the geometry and the coordinate system. 
The problem may be stated mathematically as follows, 

8~ a8 820 
u_.--+ &‘- = a- 
ax sj> djJ 

(2) 

x=0 w> y) = 0 (3) 

y=o Kfg = K,(O,--1) (4) 

y=n 0(x, co) = 0 (5) 
where 0 is the dimensionless temperature defined as, 

T-T, 
@Z-“----- 

T,-T* 

T,-T,’ 
0, = - 

G-T, 

and T, is the variable temperature of the upper surface. 
Boundary condition (4) is based on the continuity of heat 

flux and temperature at the solid-fluid interface and the 
assumption of a linear temperature variation from the lower 
to the upper surface of the plate. 

Under the assumption of large Pr, the thermal boundary 
layer & is within the hydrodynamic boundary layer 6 and 

therefore a linear velocity variation within S, is assumed, i.e. 
3/z 

u = 5, = 0.332umpy 
/I 

y112 

and from continuity equation, 

o =L ()083$x-3!” 69 

substitution of equations (7) and (8) in equation (2) and 
introduction of new variables c and Z defined as, 

(9) 

z= J 
transforms equation (2) to the following form, 

a0 1 d”0 

(10) 

-=__, 
ai zazz 01) 

Taking Laplace transform of both sides of (11) with respect to 
[ the following ordinary differential equation is obtained for 
variable 8, the Laplace transform of 0, 

~-pZR=O. (12) 

From the solution of equation (12) subject to the conditions 
that B(0) = 8, and &co) = 0, a relation is obtained between 
&, and Qw, 

I-(213) 

QEO = 32’3l-(4/3) 
~ p”V” 

where Q, is a transformed heat flux function defined as, 

(14) 

However, from the assumption of linear temperature vari- 
ation through the plate, Q, is found to be, 

Q, = 3.7g~~~l-O~)~i;3. (15) 
I m 

Elimination of Qw from equation (13) using equation (1.5) 
results in a single equation for 0,. 

jp[(1/3(l-Om)] = P+“B, 06) 

where 8 is a constant defined as, 

B= 
5.18k,Pr”3 

u,bk/ ’ 
(17) 

If one introduces a new variable X, 

X = fi3q (18) 

equation (16) may be expressed as an integral equation, 

Y 

l-(4/3) 1 
O,(X) = - X2/3 _ - 

W/3) I-(1/3) 
-----dy. (19) 

For later reference it may be stated that X and Br, are related 
as follows, 

Fig. 1. The geometry and the coordinate system. 

perhaps it is more convenient to find the wall temperature in 
terms of Om(X) where mu(X) = 1 -O,(X). Making this 
substitution in (19) results in the integral equation, 

1 
a_,(x) = 1 - ~ s x Y”%JY) 

I-(1/3) 
------dy. 

0 fX-Y)2’3 
(21) 
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The solution of the problem has now been reduced to the 
solution of the integral equation (21). 

It is suitable to present the results in terms of two function 
N* and Q* where N* is the ratio of Nusselt number in the case 
that the lower surfaceis held at a constant temperature to the 
Nusselt number in the case that upper surface is held at the 
same constant temperature and Q* is the ratio of the local 
heat fluxes in the two cases. It may easily be shown that, 

Q'=!&g+ (23) 
40 x 

SOLUTION OF THE PROBLEM 

The solution of the integral equation (21) obtained for small, 
large, and intermediate values of X is given below. 

(a) Small values ofX (large Br,) 
This solution is obtained by the method of iteration. An 

initial assumed m,(X) is substituted in the integral on the 
RHS of (21) resulting in a new value for (D,(X) and the 
procedure is repeated. The first approximation was taken as 
m,,,(X) = 1.0. The solution obtained in this way for small X is, 

mm(X) = 1 + i (- l)‘a,(X2’3)i 
i= 1 

(24) 

(b) Large oalues ofX (small Br3 
Noting that as p-0, X-t co, pB,-t g,(m) = 1 and 

expressing equation (19) in the form: 

I-(4/3) 1 
0, = 513 

P 
- pp [x”“e,cx,l (25) 

where the Laplace transform is with respect to X one obtains 
for large X 

I-(4/3) 
1=7- p2”2 [X”%(&x)]. (26) 

P 

from which it follows that, 

1 
6,(X) = 1 -p. 

r(2/3)x2/” 
(27) 

(c) Intermediate values ofX 
To solve integral equation (21) for intermediate values of X 

it is first written in equivalent form: 

1 
mm,(x) = 1 - - 

s 

x (X-y)i’%&,(X-y) 
, 

m/3) o Y 
213 dY 

(28) 

a$@) = 1 - L 

and by the transformation 

J 

X = s3, 

I-(4/3) 0 

Y = r3 

(s3 -r3)1i3@o(s3- r”)dr. 

(29) 

the singularity is eliminated, 

(30) 

1 P" 

Finally to put the equation in a form suitable for solution by 
Gauss, quadrature formula let 

r=i(c+l). (31) 

In terms of u and X one obtains, 

Q_(X) = 1 - &[_+,‘[I -($)3]“3 

x@“{X[l -(+r]ld”. (32) 

The quadrature formula of Gauss with sixteen divisions 
was used to solve equation (32). Assumed values of mW were 
substituted in the integral and the integral was evaluated by 
Gauss’s method resulting in new values of Q,(X). The 
procedure was repeated until new and old values of Q,,,(X) 
agreed to within 0.1%. The first estimate for (D,(X) was based 
on interpolation between the curves for small and large X 
which were obtained in (a) and (b) above. 

RESULTS 

Figure 2 shows the variation of Q,(X), N*, and Q* with 
Br; ‘. From the curve for Q*(X) it is observed that for values 
of Br, greater than 0.5 the error in neglecting the thermal 
resistance of the plate is more than 5% and therefore the 
problem must be solved as a conjugate one. This is a better 
criterion than the analysis of N* because the two Nussult 
numbers are not based on the same temperature difference. 

M 1.0 2.0 
er; 

3.0 4.0 

Fig. 2. The graphs of ma, N*, and Q* vs Br;‘. 

However to compare the results with those of Luikov [4] one 
may obtain from (22) and (27) for large X (small Brx), 

N* z 1 + 0.339Br,. (33) 

This is in good agreement with Luikov’s integral analysis. 
Furthermore, it follows from (33) that for Br, greater than 
0.14, N* will be greater than 1.05. This compares favorably 
with the value Br, = 0.1 estimated by Luikov. 
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